Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38507778

RESUMO

Interval walking training (IWT) is a free-living training intervention involving alternating fast and slow walking cycles. IWT is efficacious in improving physical fitness and muscle strength, and reducing factors associated with lifestyle-related diseases. In individuals with type 2 diabetes, IWT improves glycemic control directly through enhanced glucose effectiveness, challenging conventional views on mechanisms behind training-induced improvements in glycemic control. Whereas adherence to IWT in short-term studies is high, ensuring long-term adherence remains a challenge, particularly in populations with chronic diseases and/or overweight/obesity. Long-term studies in real-world settings are imperative to ascertain the widespread effectiveness of IWT and elucidate its impact on hard endpoints.

2.
Res Involv Engagem ; 9(1): 83, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710344

RESUMO

BACKGROUND: Increased levels of physical activity are associated with beneficial health effects for people with type 2 diabetes, cardiovascular disease and/or severe obesity; however, transforming knowledge about these effects into action is challenging. The aim of this paper is to explore lessons learnt from a co-creation process in a partnership project involving local stakeholders, including citizens, and researchers. The purpose of the process was to link a public health care institution with civil society organisations in the local community to make it possible for citizens to continue to be physically active after ending their public rehabilitation. Secondarily, this paper aims to develop a conceptual model of the above process. METHODS: The study constitutes the first part of Project Active Communities and was based on a partnership between three research institutions and a Danish rural municipality, involving municipal and civil society stakeholders and citizens with type 2 diabetes, cardiovascular disease and/or severe obesity in co-creation of concrete interventions for implementation. The co-creation process was divided into two tracks, one involving citizens (two workshops) and one involving municipal and civil society stakeholders (two workshops). The two tracks were concluded with a final workshop involving all stakeholders, including local politicians. Data sources are focus groups and bilateral meetings, workshop observations, and questionnaires. RESULTS: Lessons learnt include the importance of having a flexible timeframe for the co-creation process; giving room for disagreements and matching of mutual expectations between stakeholders; the value of a coordinator in the municipality to achieve acceptance of the project; and the significance of engaging local politicians in the co-creation process to accommodate internal political agendas. We have developed a conceptual model for a co-creation process, where we outline and explain three distinct phases: stakeholder identification and description, co-creation, and prototyping. The model can be adapted and applied to other sectors and settings. CONCLUSIONS: This study documents lessons learnt in a co-creation process aiming to link a public health care institution with civil society organisations in the local community. Further, this study has specified productive co-creative processes and documented the various phases in a conceptual model.


It is well known that physical activity has health benefits for people with chronic diseases. In this study, our aim was to explore lessons learnt from a co-creation process and develop a model for others to apply. The study was based on a partnership between three research institutions and a Danish rural municipality, involving municipal and civil society stakeholders and citizens with type 2 diabetes, cardiovascular disease and/or severe obesity. During the study, the above-mentioned stakeholders were invited to five workshops, where interventions for linking a public health care institution and civil society organisations were co-created. The five co-creation workshops led to the identification of four interventions, linking public health care institutions and civil society organisations. Lessons learnt from this project, which can be used by others who wish to design and conduct a co-creative process with diverse stakeholders, include: the importance of having a flexible timeframe for the co-creation process, as delays can easily occur in the unpredictable process of co-creation giving room for disagreements and matching of mutual expectations between stakeholders, as a common understanding of each stakeholder's motives is important for the success of the project the importance and value of a coordinator in the municipality to achieve acceptance of the project the significance of engaging local politicians in the co-creation process to take internal political agendas into consideration. We conclude by identifying three phases­a stakeholder, a co-creation, and a prototyping phase­in a model for co-creation that may be adapted and used by others.

3.
JMIR Mhealth Uhealth ; 10(9): e30602, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36170002

RESUMO

BACKGROUND: Effective and sustainable implementation of physical activity (PA) in type 2 diabetes (T2D) health care has in general not been successful. Efficacious and contemporary approaches to support PA adherence and adoption are required. OBJECTIVE: The primary objective of this study was to investigate the effectiveness of including an app-based (InterWalk) approach in municipality-based rehabilitation to increase moderate-and-vigorous PA (MVPA) across 52 weeks compared with standard care among individuals with T2D. METHODS: The study was designed as a parallel-group, randomized trial with 52 weeks' intervention and subsequent follow-up for effectiveness (52 weeks from baseline). Participants were recruited between January 2015 and December 2016 and randomly allocated (2:1) into 12 weeks of (1) standard care + InterWalk app-based interval walking training (IWT; IWT group; n=140), or (2) standard care + the standard exercise program (StC group; n=74). Following 12 weeks, the IWT group was encouraged to maintain InterWalk app-based IWT (3 times per week for 30-60 minutes) and the StC group was encouraged to maintain exercise without structured support. Moreover, half of the IWT group (IWTsupport group, n=54) received additional motivational support following the 12-week program until 52-week follow-up. The primary outcome was change in objectively measured MVPA time (minutes/day) from baseline to 52-week follow-up. Key secondary outcomes included changes in self-rated physical and mental health-related quality of life (HRQoL), physical fitness, weight, and waist circumference. RESULTS: Participants had a mean age of 59.6 (SD 10.6) years and 128/214 (59.8%) were men. No changes in MVPA time were observed from baseline to 52-week follow-up in the StC and IWT groups (least squares means [95% CI] 0.6 [-4.6 to 5.8] and -0.2 [-3.8 to 3.3], respectively) and no differences were observed between the groups (mean difference [95% CI] -0.8 [-8.1 to 6.4] minutes/day; P=.82). Physical HRQoL increased by a mean of 4.3 (95% CI 1.8 to 6.9) 12-item Short-Form Health Survey (SF-12) points more in the IWT group compared with the StC group (Benjamini-Hochberg adjusted P=.007) and waist circumference apparently decreased a mean of -2.3 (95% CI -4.1 to -0.4) cm more in the IWT group compared with the StC group but with a Benjamini-Hochberg adjusted P=.06. No between-group differences were observed among the remaining key secondary outcomes. CONCLUSIONS: Among individuals with T2D referred to municipality-based lifestyle programs, randomization to InterWalk app-based IWT did not increase objectively measured MVPA time over 52 weeks compared with standard health care, although apparent benefits were observed for physical HRQoL. TRIAL REGISTRATION: ClinicalTrials.gov NCT02341690; https://clinicaltrials.gov/ct2/show/NCT02341690.


Assuntos
Diabetes Mellitus Tipo 2 , Aplicativos Móveis , Diabetes Mellitus Tipo 2/terapia , Exercício Físico , Feminino , Humanos , Estilo de Vida , Masculino , Pessoa de Meia-Idade , Qualidade de Vida
4.
J Med Internet Res ; 22(9): e21195, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32930669

RESUMO

BACKGROUND: Information technologies (IT) are increasingly implemented in type 2 diabetes (T2D) treatment as a resource for remotely supported health care. However, possible pitfalls of introducing IT in health care are generally overlooked. Specifically, the effectiveness of IT to improve health care may depend on the user's readiness for health technology. OBJECTIVE: We aim to investigate readiness for health technology in relation to mental well-being, sociodemographic, and disease-related characteristics among individuals with T2D. METHODS: Individuals with T2D (aged ≥18 years) who had been referred to self-management education, exercise, diet counseling, smoking cessation, or alcohol counseling completed a questionnaire survey covering (1) background information, (2) the 5-item World Health Organization Well-Being Index (WHO-5), (3) receptiveness to IT use in physical activity, and (4) the Readiness and Enablement Index for Health Technology (READHY), constituted by dimensions related to self-management, social support, and eHealth literacy. Individuals were divided into profiles using cluster analysis based on their READHY scores. Outcomes included differences across profiles in mental well-being, sociodemographic, and disease-related characteristics. RESULTS: Participants in the study were 155 individuals with T2D with a mean age of 60.2 (SD 10.7) years, 55.5% (86/155) of which were men and 44.5% (69/155) of which were women. Participants were stratified into 5 health technology readiness profiles based on the cluster analysis: Profile 1, high health technology readiness; Profile 2, medium health technology readiness; Profile 3, medium health technology readiness and high level of emotional distress; Profile 4, medium health technology readiness and low-to-medium eHealth literacy; Profile 5, low health technology readiness. No differences in sociodemographic and disease-related characteristics were observed across profiles; however, we identified 3 vulnerable subgroups of individuals: Profile 3 (21/155, 13.5%), younger individuals (mean age of 53.4 years, SD 8.9 years) with low mental well-being (mean 42.7, SD 14.7) and emotional distress (mean 1.69, SD 0.38); Profile 4 (20/155, 12.9%), older individuals (mean age 66.3 years, SD 9.0 years) with less IT use (50.0% used IT for communication) and low-to-medium eHealth literacy; and Profile 5 (36/155, 23.2%) with low mental well-being (mean 43.4, SD 20.1) and low readiness for health technology. CONCLUSIONS: Implementation of IT in health care of individuals with T2D should be based on comprehensive consideration of mental well-being, emotional distress, and readiness for health technology rather than sociodemographic and disease-related characteristics to identify the individuals in need of social support, self-management education, and extensive IT support. A one-size-fits-all approach to IT implementation in health care will potentially increase the risk of treatment failure among the most vulnerable individuals.


Assuntos
Diabetes Mellitus Tipo 2/epidemiologia , Informática Médica/métodos , Telemedicina/métodos , Estudos Transversais , Dinamarca , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
5.
PLoS One ; 14(1): e0208181, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30629601

RESUMO

OBJECTIVES: The objective was to investigate the feasibility and usability of electronic momentary assessment, goal-setting and personalized phone-calls on adherence to a 12-week self-conducted interval walking training (IWT) program, delivered by the InterWalk smartphone among patients with type 2 diabetes (T2D). METHODS: In a two-arm pilot randomized controlled trial (Denmark, March 2014 to February 2015), patients with T2D (18-80 years with a Body Mass Index of 18 and 40 kg/m2) were randomly allocated to 12 weeks of IWT with (experimental) or without additional support (control). The primary outcome was the difference between groups in accumulated time of interval walking training across 12 weeks. All patients were encouraged to use the InterWalk application to perform IWT for ≥90 minute/week. Patients in the experimental group made individual goals regarding lifestyle change. Once a week inquiries about exercise adherence was made using an ecological momentary assessment (EMA). In case of consistent self-reported non-adherence, the patients would receive a phone-call inquiring about the reason for non-adherence. The control group did not receive additional support. Information about training adherence was assessed objectively. Usability of the EMA was assessed based on response rates and self-reported satisfaction after 12-weeks. RESULTS: Thirty-seven patients with T2D (66 years, 65% female, hemoglobin 1Ac 50.3 mmol/mol) where included (n = 18 and n = 19 in experimental and control group, respectively). The retention rate was 83%. The experimental group accumulated [95%CI] 345 [-7, 698] minutes of IWT more than the control group. The response rate for the text-messages was 83% (68% for males and 90% for females). Forty-one percent of the experimental and 25% of the control group were very satisfied with their participation. CONCLUSION: The combination inquiry about adherence using EMA, goal-setting with the possibility of follow-up phone calls are considered feasible interventions to attain training adherence when using the InterWalk app during a 12-week period in patients with T2D. Some uncertainty about the effect size of adherence remains. TRIAL REGISTRATION: Clinicaltrials.gov NCT02089477.


Assuntos
Telefone Celular , Diabetes Mellitus Tipo 2/fisiopatologia , Avaliação Momentânea Ecológica , Aplicativos Móveis , Cooperação do Paciente , Caminhada , Idoso , Estudos de Viabilidade , Feminino , Seguimentos , Objetivos , Humanos , Masculino , Satisfação do Paciente , Projetos Piloto , Envio de Mensagens de Texto , Resultado do Tratamento
6.
Artigo em Inglês | MEDLINE | ID: mdl-28659869

RESUMO

BACKGROUND AND OBJECTIVES: Ambiguous results have been reported regarding the effects of training on resting metabolic rate (RMR), and the importance of training type and intensity is unclear. Moreover, studies in subjects with type 2 diabetes (T2D) are sparse. In this study, we evaluated the effects of interval and continuous training on RMR in subjects with T2D. Furthermore, we explored the determinants for training-induced alterations in RMR. METHODS: Data from two studies, both including T2D subjects, were encompassed in this manuscript. Study 1 was a randomized, crossover study where subjects (n = 14) completed three, 2-week interventions [control, continuous walking training (CWT), interval-walking training (IWT)] separated by washout periods. Training included 10 supervised treadmill sessions, 60 min/session. CWT was performed at moderate walking speed [aiming for 73% of walking peak oxygen uptake (VO2peak)], while IWT was performed as alternating 3-min repetitions at slow (54% VO2peak) and fast (89% VO2peak) walking speed. Study 2 was a single-arm training intervention study where subjects (n = 23) were prescribed 12 weeks of free-living IWT (at least 3 sessions/week, 30 min/session). Before and after interventions, RMR, physical fitness, body composition, and glycemic control parameters were assessed. RESULTS: No overall intervention-induced changes in RMR were seen across the studies, but considerable inter-individual differences in RMR changes were seen in Study 2. At baseline, total body mass (TBM), fat-free mass (FFM), and fat mass were all associated with RMR. Changes in RMR were associated with changes in TBM and fat mass, and subjects who decreased body mass and fat mass also decreased their RMR. No associations were seen between changes in physical fitness, glycemic control, or FFM and changes in RMR. CONCLUSION: Neither short-term continuous or interval-type training, nor longer term interval training affects RMR in subjects with T2D when no overall changes in body composition are seen. If training occurs concomitant with a reduction in fat mass, however, RMR is decreased. CLINICAL TRIALS REGISTRATION WWWCLINICALTRIALSGOV: NCT02320526 and NCT02089477.

7.
Artigo em Inglês | MEDLINE | ID: mdl-28174664

RESUMO

BACKGROUND: Prevention of multi-morbidities following non-communicable diseases requires a systematic registration of adverse modifiable risk factors, including low physical fitness. The aim of the study was to establish criterion validity and reliability of a smartphone app (InterWalk) delivered fitness test in patients with type 2 diabetes. METHODS: Patients with type 2 diabetes (N = 27, mean (SD) age 64.2 (5.9) years, BMI 30.0 (5.1) kg/m2, (30 % male)) completed a 7-min progressive walking protocol twice (with and without encouragement). VO2 during the test was assessed using indirect calorimetry and the acceleration (vector magnitude) from the smartphone was obtained. The vector magnitude was used to predict VO2peak along with the co-variates weight, height and sex. The validity of the algorithm was tested when the smartphone was placed in the right pocket of the pants or jacket. The algorithm was validated using leave-one-out cross validation. Test-retest reliability was tested in a subset of participants (N = 10). RESULTS: The overall VO2peak prediction of the algorithm (R2) was 0.60 and 0.45 when the smartphone was placed in the pockets of the pants and jacket, respectively (p < 0.001). The mean bias (limits of agreement) in the cross validation was-0.4 (38) % (pants) and-0.1 (46) % (jacket). When the smartphone was placed in the jacket a significant intensity dependent bias (r = 0.5, p = 0.02) was observed. The test-retest intraclass correlations were 0.85 and 0.86 (p < 0.001), for the pants and jacket, respectively. No effects of encouragement were observed on test performance. CONCLUSION: In conclusion, the InterWalk Fitness Test is accurate and reliable for persons with type 2 diabetes when the smartphone is placed in the side pocket of the pants for. The test could give a fair estimate of the CRF in absence of a progressive maximal test during standardized conditions with the appropriate equipment. TRIAL REGISTRATION: www.clinicaltrials.org (NCT02089477), first registered (prospectively) on March 14th 2014.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...